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Abstract

Tourism in Spain presents a highly seasonal component in terms of the number of
tourists. However, with respect to the average tourist expenditure, the seasonal charac-
ter has so far not been studied. The volatility of the tourist expenditure in Spain is also
unknown. In this study, we therefore undertake to establish a model for the average daily
expenditure from international tourists in Spain and its volatility. We determine autoregres-
sive time series models (ARIMA) for Spain in general and for the Spanish Autonomous
Communities most relevant for Spanish tourism, and make a first study of the variability
of the variance or heteroscedasticity through GARCH models.
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1 Introduction
Tourism is a key factor in Spain’s socio-economic panorama. In the year 2017, Spain
climbed from 3rd to 2nd place in arrivals and held on to 2nd position in receipts to become
the world’s second largest destination by both international tourist arrivals and receipts
[UNWTO, 2018]. Travel and tourism is one of the main motors of Spain’s economy, with
a total contribution of roughly 15% both in terms of GDP and in terms of employment,
a number which is expected to further increase in the next decade [WTTC, 2018]. How-
ever, while the number of tourist arrivals in Spain keeps increasing, total income from
international tourism has lost this upward trend in the past decade [WB, 2018].

Within the large body of statistical research on tourism (see [Song and Li, 2008] and
[Goh and Law, 2011] for reviews), tourism demand is usually defined in terms of number
of arrivals, with tourist expenditure and overnight stays as distant second and third most
popular variables. While number of arrivals and expenditure are obviously correlated, they
have a different impact on tourism decision policy [Song et al., 2010] and their fluctuations
have been shown to depend on different influencing factors [Sheldon, 1993, Song et al.,
2010]. We will here focus explicitly on expenditure. Expenditure, although harder to mea-
sure statistically (data on expenditure are often based on the tourists’ own estimates), is
economically more relevant, and as pointed out explicitly for example in [Papatheodorou
and Song, 2005], low-income mass tourism characterised by high arrival numbers in com-
bination with low per capita expenditure “may prove unsustainable and lead to the eventual
decline of tourism”. While not all types of mass tourism have the same profile [Perez and
Juaneda, 2000], Spain might be a case in point: The Balearic Islands have been studied as
a prime example of the “sun and sand” tourism model with low economic benefit and high
environmental cost for the destination [Aguiló et al., 2005], and similar problems might
affect a large part of Spain’s Mediterrean coast.

Comprehensive studies of tourist expenditure focusing specifically on Spain [González
and Moral, 1995], [García-Ferrer and Queralt, 1997] are rare and require updating in the
light of the fast development of statistical methods in this area and of more recent data.

One of the main motivations for studying tourism demand is in order to make accurate
forecasts and adjust national and regional policies. In this light, it is clear that –apart from
tourism expenditure itself– it is also important to have an understanding of its variability
or volatility, especially for a country like Spain where the economic impact of tourism
is strong. Indeed, volatility describes the fluctuations and therefore the economic risk
associated to the tourism industry. Curiously, in spite of its obvious importance, statistical
studies of the volatility of tourism demand are relatively rare in the academic literature,
the first exception being [Chan et al., 2005]. Even more curiously, we are not aware of any
analysis of the volatility of tourism demand in terms of expenditure. A key innovation of
our contribution is therefore precisely this, a statistical analysis of the volatility of tourist
expenditure as applied to Spain.

As we will discuss in detail in Section 3, we will use an ARIMA time series model to
study the evolution of tourism expenditure, and a GARCH model to study its volatility. All
our calculations are performed in R. We study global data for Spain, and the Autonomous
Communities which play a major role in Spain’s tourism industry. First, we will give a
brief review of the related literature.
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2 Literature review
As mentioned earlier, most studies express tourism demand in terms of arrivals. Statistical
analyses of tourism demand specifically in terms of expenditure are much less frequent.
Interesting examples applied to global world tourism can be found in [Papatheodorou and
Song, 2005] and more recently [Martins et al., 2017].

For a general comparison of time-series and econometric methods for measuring and
forecasting tourism demand based on a forecasting competition, see [Athanasopoulos
et al., 2011]. This study finds that pure time series provide more accurate forecasts than
econometric models with explanatory variables, but did not consider Artificial Intelligence
(AI)-based techniques such as Artificial Neural Networks (ANN). Specific case-studies,
e.g. for Taiwan [Chen et al., 2012], Australia [Tularam et al., 2012], Hong Kong [Song
et al., 2011], Portugal [Fernandes et al., 2008] and Catalonia [Claveria and Torra, 2014],
show a variety of different conclusions: some of these find traditional time series such as
ARIMA to be the most adequate, even when compared to modern ANN techniques (e.g.
[Claveria and Torra, 2014]); others on the contrary emphasize the promise of ANN [Fer-
nandes et al., 2008, Palmer et al., 2006]. The 2011 review [Goh and Law, 2011] finds that
most studies show AI-based methods to outperform their econometric counterparts, but
points out that this conclusion should be handled with care, amongst other reasons because
comparative studies usually compare advanced AI-techniques with basic econometric and
time series-techniques, without taking into account recent developments in these latter
fields. They end by advocating a hybrid forecasting system which combines econometric,
time series and AI-based techniques. In any case, in spite of the dramatic improvement of
AI-related techniques in recent years, it seems still to be true (as concluded a decade ago
in [Song and Li, 2008] based on a comprehensive survey) that “there is no single model
that consistently outperforms other models in all situations”, and the performance of the
models might depend not only on the quality and frequency of the data, but also on the
length of the forecasting horizon, and even the concrete destination/origin country pair.
Again, most of these method-comparing studies focus on tourist arrival numbers, without
looking at expenditure, although [Goh and Law, 2011] cites some exceptions.

There are many interesting examples where time series techniques, mainly ARIMA,
are applied to tourism demand, see [Song and Li, 2008] and references therein. For a more
recent example, an ARIMA exercise for Macedonia was performed in [Petrevska, 2017].

The introduction of GARCH methods in the analysis of Tourism demand is usually
credited to [Chan et al., 2005]. In spite of the obvious importance of analysing and predict-
ing the volatility of tourism demand, the adoption of this method in the study of tourism
has been rare. Some exceptions are [Chang et al., 2011, 2009, Coshall, 2009, Liu and
Sriboonchitta, 2013, Makoni and Chikobvu, 2018, Shareef and McAleer, 2005], with a
special mention for [Hoti et al.] and [Bartolomé et al., 2009] which study the volatility of
tourism demand on the Spanish islands. Again, all these articles define tourism demand in
terms of arrivals. We are not aware of any analysis of the volatility of tourism expenditure,
and less so with respect to Spain.

In fact, recent studies of tourism demand in Spain have focused on the nature of season-
ality [Cunado et al., 2005], the influence of income and prices [Garin-Munoz and Amaral,
2000], of the GDP of the country of origin [Rodriguez and Rivadulla, 2012] or of the
2008 economic crisis [Bernier et al., 2014] on demand, while the influence of the fore-
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casting horizon on the precision of different machine learning-based forecasting methods
was analysed in [Claveria et al., 2016]. All these articles use arrivals (or overnight stays
in the case of [Garin-Munoz and Amaral, 2000]) as variable of interest. As rare counter-
examples, [Nicolau and Más, 2005] attempts a model for the tourist expenditure in Spain
in two stages (the decision to take a holiday and the actual expenditure) and [Perez and
Juaneda, 2000] has studied tourism expenditure in the Balearic islands for different pro-
files of mass tourism. More general academic analyses of tourism expenditure in Spain are
more than two decades old [González and Moral, 1995] and [García-Ferrer and Queralt,
1997].

3 Methodology & data

3.1 ARIMA
The different strategies used in the literature for the modelling of tourism demand, whether
in terms of arrivals or of expenditure, can broadly be classified into three types:

• Time Series models

• Econometric models

• Artificial Intelligence models, in particular Machine Learning and Neural Network-
ing models

Econometric models have greater explanatory power than pure Time Series, since they
allow to assess the importance of various independent influencing variables (e.g. the GDP
per capita of the visitor’s country of origin). However, in terms of forecasting demand,
econometric models are more complicated, since they require a prior estimate of these
independent variables, leading to an important risk of generating large errors. Since time
series are usually found to perform equally well or even better in terms of forecasting, and
are in general much simpler to handle than econometric techniques, Time Series remain
the standard method for predicting tourism demand.

In recent years, a lot of attention has been devoted to Artificial Intelligence models,
particularly Artificial Neural Networks (ANN). These are based on (supervised or unsu-
pervised) automated learning methods among a network of artificial “neurons”, inspired by
the way in which the brain works. ANN models are highly flexible and deliver spectacular
results in domains such as image and speech recognition and medical diagnosis. They are
usually considered very promising as forecasting tools, also. However, they also require a
lot of fine-tuning in the network architecture, parameter selection, training algorithm and
test data in order to provide reliable forecasts, and it is probably fair to say that they still
have a certain way to go before becoming standard use in tourism demand analysis and
forecasting.

In this contribution, we will therefore stick to the more traditional time-series tech-
niques, and perform an ARIMA (AutoRegressive Integrated Moving Average) analysis of
average tourist expenditure in Spain in the period 2008–2018. While autoregressive mod-
els for time series can be dated back to the 1920s (see [Tsay, 2000] and references therein),
ARIMA models were systematized and popularized in the famous 1970 book by Box and
Jenkins [Box et al., 2013].
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Given a dependent variable of interest yt, an ARIMA(p,d,q) model can be written in terms
of a redefined variable zt:

zt = (1−B)dyt

as
zt = µ+ φ1zt−1 + · · ·+ φpzt−p + εt + θ1εt−1 + · · ·+ θqεt−q

where

• µ is the overall average (which can always be set to 0 through a shift of coordinate)

• φ and θ are (numerical) coefficients,

• p and q are the order of the AR (AutoRegressive) and MA (Moving Average) com-
ponents of the model.

• εt is the error term (assumed to behave as Gaussian noise)

• the backshift operator B is defined through the operation Bkyt = yt−k

• d the number of differences required to make the series stationary.

Typically d = 0 (if the original series yt is stationary, in which case zt = yt); d = 1,
corresponding to a linear trend (the model is then stationary in terms of zt = yt − yt−1);
or d = 2 for a quadratic trend.

The ARIMA model is often written as

(1− φ1B − φ2B2 − · · · − φpBp)zt = (1− θ1B − θ2B2 − · · · − θpBp)εt (1)

or, more compactly:
φ(B)(1−B)dzt = θ(B)εt

where a shift zt = yt− µ is assumed in case d = 0, and φ(B) and θ(B) now represent the
full polynomials of Eq. 1.

Note that p represents the maximum lag at which previous yt−p influence yt indepen-
dently from all inbetween yt−i (i.e., the highest lag with non-zero partial autocorrelation);
and similarly, q represents the maximum lag at which previous error terms εt−q influence εt
independently from all inbetween εt−i (i.e., the highest lag with non-zero autocorrelation).

Tourism is a typical example of a seasonal activity, and so one expects to see this
seasonality reflected in the time series and in the model that best describes it. A seasonal
ARIMA model can be denoted as

ARIMA(p,d,q)×(P,D,Q)[S],

where small letters describe the overall (non-seasonal) trend and capital letters reflect the
seasonal part, and S is the seasonal time span.

Using the compact notation introduced above, this model can be written formally as

φ(B)ΦS(BS)(1−B)d(1−BS)Dzt = θ(B)ΘS(BS)εt

where we used the index S to indicate the seasonal parts, and the seasonal polynomials
are defined in a way similar to the non-seasonal polynomials defined above. Determining
the ARIMA model then consists in determining which values of p, d, q, P , D, Q and
S are best adapted to the concrete time series under study, and fitting the corresponding
coefficients φi, θi and likewise Φi and Θi.
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3.1.1 Dickey-Fuller test

The first step when identifying the ARIMA model that best fits the data, is to find the
required value of the (non-seasonal) difference d. The reason for differencing is that the
mathematical treatment within the ARIMA framework requires the time series to be sta-
tionary, i.e. that its basic properties (mean, variance, covariances and correlations) do not
depend on time.

As explained above, if the original time series is already stationary, one has d = 0. If
the original series yt shows a linear trend, then zt = yt − yt−1 will be stationary, in other
words d = 1. If the original series shows a quadratic trend, then d = 2. Other values
are rare, since a behaviour which does not fit into any of the three previous categories
typically indicates that the data should either be pre-treated in a more advanced way (e.g.
if the original series show an exponentially increasing or decreasing trend, one should first
take zt = log(yt)), or that the data is dominated by noise.

To test for stationarity, one can use the Dickey-Fuller test [Dickey and Fuller, 1979].
The Dickey-Fuller test is a so-called unit root test. It can be seen that, when the polynomial
Φ(B) has d unit roots (i.e., Φ(B) = 0 for B = 1 with multiplicity d), then the time series
expressed in terms of zt = (1 − B)dyt will be stationary. Note that we in fact use an
Augmented Dickey-Fuller test (ADF), which is an extension of the standard Dickey-Fuller
test to a wider range of Time Series models.

In this ADF test, the null hypothesis is that a unit root is present in the time series.
A small p-value (typically: smaller than 0.05) indicates a strong rejection of this null
hypothesis, and is therefore indicative of a stationary time series.

As we will discuss below, we indeed find small p-values for all the cases that we have
looked at. In other words d = 0, i.e.: the time series that we study are stationary without
any transformation.

3.1.2 Predictions

One of the main applications of ARIMA models is to make predictions for the (near)
future. It can be shown that the variance on a predicted value m time lags ahead of the
most recent observation is

Var(m) = σ2ε

m−1∑
j=0

Ψ2
j

where Ψj represent the weights in the infinite-order causal series development of the
ARIMA model into an equivalent pure MA model. The main point here is that this sum is
strictly increasing (therefore the variance obviously increases as one tries to make predic-
tions further ahead) and in fact tends towards the total variance of the complete observed
time series. 95% prediction intervals are given by

yn+m ± 1.96
√

Var(m)

where yn+m is the point-like estimate obtained from the ARIMA model with the n most
recent observations. We will plot and briefly comment on these prediction intervals for the
most interesting cases in the Results section.
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3.2 GARCH
In financial models, time-varying volatility is often studied by (generalized) autoregres-
sive conditional heteroskedasticity or (G)ARCH. ARCH models were introduced in 1982
by Engle [Engle, 1982] to describe inflation in the UK, and generalized (GARCH) by
Bollerslev in 1986 [Bollerslev, 1986]. Their first application to tourism dates from 2005
[Chan et al., 2005].

The starting point is that it is often not a good assumption to assume that the prediction
errors εt are independent random variables with constant variance σ2ε .

In cases where this assumption is indeed violated, it is said that the distribution presents
heteroscedasticity. One can then start by replacing the previous assumption and instead
writing:

εt = σtet

where σt now represents the variance conditional on all previous information F , i.e.

σ2 = E
[
εt
∣∣Ft−1

]
and et ∼ N (0, 1), i.e. a sequence of standardized zero-mean error terms. A GARCH(r,s)
model for the variance σ2t of a time series can be written

σ2t = ω +

s∑
i=1

αiε
2
t−i +

r∑
j=1

βjσ
2
t−j

where the αi are the ARCH coefficients, and βj the GARCH coefficients.
Note that, although from the plots of the data it seems intuitively obvious that a volatil-

ity model is relevant, because the variance is far from constant, part of the work is precisely
to confirm this intuition. Let us therefore briefly describe the different steps that we have
undertaken w.r.t. the GARCH model.

3.2.1 Autocorrelation analysis of the ARIMA residuals

First, we analyse the ACF (AutoCorrelation Function) and PACF (Partial AutoCorrelation
Function) of the (squares of the) residuals from the ARIMA models. These should be
small in order to confirm that the ARIMA models provide a good fit for the different time
series. A Portmanteau Q-test (related to the Ljung-Box text) and a Lagrange Multiplier test
are carried out to identify whether these residuals indeed present heteroscedasticity. These
tests analyse different aspects of heteroscedasticity and are therefore complementary: as
soon as one of them is positive (i.e., has a p-value <0.05), this shows that a GARCH model
is indeed indicated, even if the other is inconclusive.

3.2.2 GARCH selection criteria

The selection criteria for the GARCH models depend on the AIC (Akaike Information
Criterion). The AIC is a measure for the information lost by the model w.r.t. the original
data, and should therefore be as small as possible. In other words, for each region of study
(Spain or Autonomous Community), the corresponding GARCH model is the one that has
the lowest AIC amongst all candidate models.
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Once the model has been selected, the corresponding coefficients are calculated, and
each coefficient receives a p-value in the usual way: the lower the p-value, the higher the
rejection of the null hypothesis (namely, that the corresponding coefficient is zero), and
hence the higher the significance for a non-zero coefficient with the actual value obtained.

3.2.3 Autocorrelation analysis of the GARCH residuals

After the GARCH model has been determined, we analyse the ACF (AutoCorrelation
Function) and PACF (Partial AutoCorrelation Function) of the (squares of the) residu-
als from the actual GARCH models. These should be small in order to confirm that the
GARCH models provide good a fit for the volatility in the different time series. We test
explicitly whether the heteroscedasticity of the variance has been satisfactorily incorpo-
rated in the GARCH model, through a Ljung-Box test for different values of the statistic
Q. We also test whether the residuals of the GARCH model fulfill normality through both
a Jarque-Bera and a Shapiro-Wilk test, two classical normality tests.

Finally, we use the GARCH model obtained to make a 12-month forecast for the vari-
ance.

3.3 Data & variable
We use data from Egatur (Encuesta de gasto turístico - Survey of touristic expenditure),
the statistical operation which collects data on the expenses made by non-resident visitors
in Spain.

We cover the period 2008-2018. The Egatur data until 2015 were obtained from Tour-
spain/Turespaña, Spain’s State Secretary of Tourism. Since 2015, the Egatur data are
collected by INE (Instituto Nacional de Estadística), the official Spanish Statistical Office.
Note that for the data until 2015, we have access to the full daily data obtained directly
from the surveys, whereas since 2015 we currently have access only to the monthly sum-
maries published by INE.

The variable that we analyse is the average daily expenditure (DE) per (foreign) tourist.
This is obtained from the Egatur data as

DE =
total expenditure during visit

number of overnight stays

where both quantities are measured per tourist. A summary of the data is given in Table 1.
A histogram of our variable, namely the daily expenditure by international tourists,

general for Spain, based on these data can be found in Fig. 1. The size of the bars in this
histogram are therefore proportional to the number of months in which the daily average
expenditure lied within the corresponding range of values.

We have performed analyses both for Spain in general, and for the different Au-
tonomous Communities separately. The most interesting results for the Autonomous Com-
munities most relevant for Spain’s tourism industry will be shown and discussed explicitly
in the Results section below. In particular, we have selected the Autonomous Communi-
ties of our focus based on a simple indicator, namely the ones with the largest number of
tourist arrivals in the period October 2015–August 2018 as indicated in the below table 2
(source: INE 2018).
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mean sd min max range
España 182.57 19.77 138.80 235.20 96.41
Andalucia 168.74 40.90 100.78 374.20 273.42
Aragón 174.04 49.93 97.43 374.17 276.74
Asturias 168.89 60.27 78.29 491.20 412.91
Baleares 175.58 65.31 68.36 474.90 406.54
Canarias 172.79 55.66 60.35 412.96 352.61
Cantabria 155.85 37.83 89.22 350.73 261.52
Cataluña 206.75 46.82 96.57 328.39 231.83
Castilla y León 167.29 38.41 100.49 288.51 188.02
Castilla la Mancha 160.13 41.50 92.47 346.62 254.15
Extremadura 144.45 34.54 65.86 237.44 171.58
Galicia 160.41 49.44 85.46 489.00 403.54
Madrid 241.07 52.58 110.64 354.97 244.33
Murcia 135.41 42.99 61.94 399.62 337.69
Navarra 185.30 64.25 63.78 445.56 381.77
Pais Vasco 209.18 54.99 120.89 491.59 370.70
Rioja 173.52 72.96 58.77 413.96 355.19
Valencia 153.75 30.20 103.34 268.75 165.41
Ceuta 203.26 161.62 57.46 530.14 472.68
Melilla 130.00 96.68 37.43 333.94 296.50

Table 1: Summary of Data: mean, standard deviation, minimum, maximum and range of the
daily expenditure (in C) per international tourist in Spain and in the Spanish Autonomous
Communities, 2008–2018

Figure 1: Histogram for the average daily expenditure by international tourists in Spain, mea-
sured per month. The blue line shows the density curve, the red line is the normal distribution
approximation.

9



Autonomous Community absolute number with respect to total for Spain (%)
Catalonia 1.546.953 23,73
Canary Islands 1.135.416 17,42
Balearic Islands 1.090.633 16,73
Andalusia 917.669 14,08
Valencian Community 695.375 10,67
Madrid Community 523.851 8,04
Other Autonomous Communities 609.523 9,35
Total 6.519.419

Table 2: Number of tourist arrivals (average per month for period Oct 2015–Aug 2018)

The evolution of the average daily expenditure per tourist for the main Autonomous
Communities is plotted in Fig. 2. From that plot, it should come as no surprise that we will
find that most Autonomous Communities do not show any clear (upward or downward)
trend but are roughly stationary. Madrid (blue) and Catalonia (yellow) are the exceptions,
they are the only two regions with a clear upward trend in the past few years. This be-
comes even clearer when plotting the data separately for Spain and for the 6 Autonomous
Communities that we have identified earlier, see Fig. 3 and 4.

Figure 2: Time series plot showing the evolution of the daily tourist expenditure in the Spanish
Autonomous Communities most important for tourism. The blue line corresponds to Madrid,
the yellow line to Catalonia. Other Autonomous Communities of interest are discussed in the
main text.

10



Figure 3: Time series for Spain

4 Results & analysis

4.1 Unit root test
As mentioned above, we perform an Augmented Dickey-Fuller (ADF) or unit root test.
The absence of unit roots in all cases (both the global results for Spain and the individ-
ual Autonomous Communities separately) means that the original time series are already
approximately stationary, without the need for any transformation. The results are sum-
marized in Table 3. Note that the ADF statistic is a negative number, which is compared
to the critical value (which depends on the sample size and a number of other parameters)
to obtain the p-value. As usual, the null hypothesis H0 (namely that there is a unit root) is
rejected for p < 0.05, in which case the time series can be considered stationary.

ADF statistic p-value
Spain -54158 <0.01
Catalonia -43424 <0.01
Canary Islands -50554 <0.01
Andalusia -37042 0.02671
Valencian Community -35114 0.04413
Madrid Community -41118 <0.01

Table 3: ADF test results

We plot the case of Spain for illustrative purposes, see Fig. 5. Note that, although
several roots lie close to the complex unit circle, detailed analysis shows that they all lie
strictly within the circle, thereby confirming the approximately stationary character of the
time series.
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Figure 4: Time series for the Autonomous Communities with highest number of tourists. From
left to right, row by row: Catalonia and Canary Islands; Balearic Islands and Andalusia; Va-
lencia and Madrid. Note the upward trend for Catalonia and Madrid.

12



Figure 5: Unit root test, global data (Spain). All complex roots lie within the unit circle. The
time series is therefore stationary.

4.2 ARIMA models
We use R to perform an ARIMA modelling for the global data for Spain, as well as for
each Autonomous Community separately. The results are summarized in Table 4. Note
that these models are selected based on the AIC criterion (which should be minimum) and
a maximum likelihood criterion.

ARIMA model
Spain (1,1,1)(1,0,0)[12]
Catalonia (2,1,1)
Canary Islands (2,1,1)(1,0,0)[12]
Balearic Islands (0,1,1)
Andalusia (0,1,1)
Valencian Community (1,0,0)
Madrid Community (2,1,1)(1,0,1)[12]

Table 4: ARIMA results for Spain and the main Autonomous Communities

It is remarkable that, apart from Madrid and the Canary Islands, all the main Au-
tonomous Communities separately are best described by non-seasonal ARIMAs. It should
be stressed that we are analysing the average daily tourist expenditure, so this non-seasonality
is unrelated to the question whether the total amount of tourists (and therefore the total
tourist expenditure) is seasonal or not. In any case, the global data for Spain does indeed
show a clear seasonal component. The estimated coefficients of all these ARIMA models,
together with their standard error, normalized z-value, p-value and significance level, are
given in Table 5

4.2.1 ARIMA residuals

To be confident about the correctness of the ARIMA models just obtained, we plot the
residuals (i.e. the random part or error which is not included in the model), see Fig. 6.
We see that both for Spain globally, and for the Autonomous Communities separately,
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Region Coefficient Estimate Std. Error z value Pr(>|z|) significance level

Spain
ar1 0.263871 0.107256 2.4602 0.01389 *
ma1 -0.950312 0.059718 -15.9134 < 2e-16 ***
sar1 0.173779 0.091836 1.8923 0.05845 .

Andalusia ma1 -0.929260 0.039022 -23.814 < 2.2e-16 ***

Canary Islands

ar1 -0.011311 0.092941 -0.1217 0.903134
ar2 0.244285 0.092801 2.6324 0.008479 **
ma1 -0.972640 0.027249 -35.6949 < 2.2e-16 ***
sar1 0.276350 0.097746 2.8272 0.004695 **

Catalonia
ar1 0.343178 0.101467 3.3822 0.0007192 ***
ar2 0.165015 0.097990 1.6840 0.0921806 .
ma1 -0.920066 0.047251 -19.4719 < 2.2e-16 ***

Madrid

ar1 0.223616 0.096253 2.3232 0.02017 *
ar2 0.178963 0.094747 1.8889 0.05891 .
ma1 -0.929485 0.036092 -25.7530 < 2.2e-16 ***
sar1 0.831374 0.112619 7.3822 1.557e-13 ***
sma1 -0.610767 0.156602 -3.9001 9.615e-05 ***

Valencia
ar1 0.212744 0.086624 2.4559 0.01405 *

intercept 153.754543 3.305807 46.5104 < 2e-16 ***
Balearic Islands ma1 -0.955315 0.032544 -29.355 < 2.2e-16 ***

The significance codes correspond to 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table 5: ARIMA coefficients for the models found in Table 4.

the residuals are indeed small, certainly well below the standard level which is typically
considered in the literature. In other words the fit of the different models to the data of
the different Autonomous Communities is very good. However, we also see from this
figure that the residuals are not distributed evenly throughout time, which is a first, visual
indication that a GARCH model for the variability might be required.

4.2.2 Predictions

80% and 95% predictions with a horizon of 12 months are given in Fig. 7 for Spain, Cat-
alonia and Madrid. The other Autonomous Communities give predictions of little interest,
because the obtained ARIMA models are too simple to make reliable predictions.

4.3 GARCH
4.3.1 ARIMA residuals and GARCH tests

The ARIMA residuals and the results from the Portmanteau Q and Lagrange Multiplier
tests are shown in Figs. 9 and 9. Note that the Portmanteau Q test and the LM test sepa-
rately would not be sufficient in all cases, but the combination of both is conclusive, and
shows that a GARCH model to address the heteroscedasticity of the variance is indicated
in all cases.

4.3.2 Selection of GARCH models

The obtained GARCH models are shown in Table 6. As in the case of the ARIMA models,
the GARCH models are selected based on minimum AIC amongst all candidate models.
The coefficients for these GARCH models are given in table 7

14



Figure 6: Residuals, ACF of the residuals, and histogram with model prediction for Spain (top)
and for the main Autonomous Communities. From left to right, row by row: Catalonia, Canary
Islands and Balearic Islands; Andalusia, Valencia and Madrid.
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Figure 7: 12-month ARIMA predictions for Spain (top) and for Catalonia (bottom left) and
Madrid (bottom right).

GARCH model
Spain (1,1)
Catalonia (1,3)
Canary Islands (1,1)
Balearic Islands (1,5)
Andalusia (1,3)
Valencian Community (3,1)
Madrid Community (1,1)

Table 6: GARCH models obtained for Spain and the Autonomous Communities of interest
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Region Coefficient Estimate Std. Error t value Pr(>|t|) significance level

Spain

mu 1.6588831 1.4936002 1.111 0.2667
omega 0.0003399 7.0424689 0.000 1.0000
alpha1 0.0708527 0.0327158 2.166 0.0303 *
beta1 0.9219997 0.0397499 23.195 <2e-16 ***

Andalusia

mu -1.726e+00 1.389e+00 -1.243 0.214
omega 6.329e+00 4.306e+01 0.147 0.883
alpha1 1.000e+00 2.355e-01 4.247 2.17e-05 ***
beta1 2.186e-02 3.122e-02 0.700 0.484
beta2 1.000e-08 (*) (*) (*)
beta3 3.763e-01 6.846e-02 5.496 3.88e-08 ***

Canarias

mu -5.15325 3.51480 -1.466 0.143
omega 9.11751 28.52242 0.320 0.749
alpha1 0.08011 0.05770 1.388 0.165
beta1 0.90844 0.05254 17.291 <2e-16 ***

Catalonia

mu 5.997e-01 2.519e+00 0.238 0.8118
omega 4.178e+01 5.867e+01 0.712 0.4764
alpha1 3.258e-01 1.301e-01 2.503 0.0123 *
beta1 3.619e-02 1.599e-01 0.226 0.8209
beta2 1.000e-08 1.026e-01 0.000 1.000
beta3 6.301e-01 9.662e-02 6.522 6.95e-11 ***

Madrid

mu 8.20318 2.60212 3.152 0.00162 **
omega 26.79504 33.76451 0.794 0.42744
alpha1 0.14624 0.08451 1.730 0.08355 .
beta1 0.82641 0.08351 9.896 < 2e-16 ***

Valencia

mu -3.912e-01 8.689e+00 -0.045 0.964
omega 8.707e-04 8.277e+00 0.000 1.000
alpha1 1.000e-08 7.253e-01 0.000 1.000
alpha2 1.000e-08 5.313e-01 0.000 1.000
alpha3 1.016e-01 1.501e-01 0.677 0.498
beta1 8.907e-01 1.062e-01 8.386 <2e-16 ***

Balearic Islands

mu -6.681e+00 1.511e+00 -4.421 9.84e-06 ***
omega 4.223e-03 2.763e+01 0.000 1
alpha1 8.562e-01 2.063e-01 4.149 3.34e-05 ***
beta1 1.000e-08 (*) (*) (*)
beta2 1.000e-08 1.288e-02 0.000 1
beta3 1.000e-08 (*) (*) (*)
beta4 3.376e-01 (*) (*) (*)
beta5 7.740e-02 (*) (*) (*)

The significance codes correspond to 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table 7: GARCH coefficients for the models found in Table 6a)

a) In the cases marked with (*), the standard error could not be evaluated due to a singularity in the covariance
matrix.

17



Figure 8: Analysis of the ARIMA residuals (top) and GARCH tests (bottom): Portmanteau Q
test (left) and Lagrange Multiplier test (right) for Spain.

4.3.3 GARCH residuals & future predictions

As shows in Table 8, the Ljung-Box tests (both for the residuals and the residuals squared,
and at different values of the test statistic Q) confirm that the GARCH have been effective
in the sense that, in all cases, the p-value p � 0.05, therefore the null hypothesis that the
GARCH residuals no longer present heteroscedasticity is accepted. The Jarque-Bera and
the Shapiro-Wilk tests contrast the null hypothesis H0 that these residuals are normally
distributed. H0 is accepted for Madrid, and (barely) for Spain, but rejected (p < 0.05) in
all other cases. This indicates that in all those cases other than Spain and Madrid, a more
complicated (non-linear) GARCH model will be needed. We leave this for future work.

Finally, we plot the GARCH prediction for Spain, as well as for Andalusia and the
Balearic Islands, in Fig. 10.

5 Conclusions
We have developed ARIMA and GARCH models for the daily expenditure from interna-
tional tourists in Spain over the period 2008–2018 and its volatility. We have studied Spain
in general, as well as the Autonomous Communities most relevant for Spanish tourism.
The ARIMA models are quite satisfying in general, in the sense that a non-trivial ARIMA
was found for each case, which fits the data very well. Reasonable predictions are obtained
in some cases, less so in others.

The results for the GARCH models should be interpreted as work in progress: al-
though we find GARCH models that solve the heteroscedasticity of the ARIMA residuals
satisfactorily, these residuals are still strongly non-normal in many cases, indicated that
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Figure 9: Analysis of the ARIMA residuals (top) and GARCH tests (bottom): Portmanteau Q
test (left) and Lagrange Multiplier test (right) for (row by row) Catalonia and Balearic Islands;
Andalusia and Madrid.
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Region Test R/R2 Test Statistic value p-value

Spain

Jarque-Bera Test R Chi2 5.756262 0.05623979
Shapiro-Wilk Test R W 0.9801071 0.05855171

Ljung-Box Test

R Q(10) 8.414394 0.588428
R Q(15) 13.88077 0.53459
R Q(20) 19.81559 0.4695176
R2 Q(10) 6.260922 0.792886
R2 Q(15) 11.44333 0.7205816
R2 Q(20) 14.22665 0.8188208

Catalonia

Jarque-Bera Test R Chi2 8.310938 0.01567844
Shapiro-Wilk Test R W 0.9506902 0.0001548937

Ljung-Box Test

R Q(10) 8.463025 0.5837051
R Q(15) 9.525819 0.8484608
R Q(20) 15.14329 0.7681507
R2 Q(10) 5.39433 0.8633295
R2 Q(15) 7.2839 0.9492875
R2 Q(20) 13.2644 0.8657536

Canary Islands

Jarque-Bera Test R Chi2 19.75103 5.141847e-05
Shapiro-Wilk Test R W 0.9615736 0.001157347

Ljung-Box Test

R Q(10) 3.131791 0.9781501
R Q(15) 7.953232 0.925644
R Q(20) 12.30734 0.9050914
R2 Q(10) 7.145179 0.7116718
R2 Q(15) 14.51513 0.4868731
R2 Q(20) 15.21589 0.7639239

Balearic Islands

Jarque-Bera Test R Chi2 57.21383 3.768097e-13
Shapiro-Wilk Test R W 0.8959867 6.309865e-08

Ljung-Box Test

R Q(10) 8.355261 0.5941784
R Q(15) 11.19847 0.7384024
R Q(20) 12.78524 0.886407
R2 Q(10) 3.402698 0.9702994
R2 Q(15) 4.829972 0.9934707
R2 Q(20) 7.686855 0.9937451

Andalusia

Jarque-Bera Test R Chi2 289.0935 0
Shapiro-Wilk Test R W 0.8778514 8.237248e-09

Ljung-Box Test

R Q(10) 6.899207 0.734925
R Q(15) 11.99736 0.6792286
R Q(20) 16.26067 0.700327
R2 Q(10) 2.546925 0.9901741
R2 Q(15) 3.939372 0.9979291
R2 Q(20) 8.454818 0.9884051

Madrid

Jarque-Bera Test R Chi2 3.413354 0.1814678
Shapiro-Wilk Test R W 0.9845099 0.1574786

Ljung-Box Test

R Q(10) 6.833238 0.741089
R Q(15) 11.98993 0.6797914
R Q(20) 15.51412 0.7462733
R2 Q(10) 14.07458 0.1696171
R2 Q(15) 20.20095 0.1643587
R2 Q(20) 23.77055 0.2525586

Valencia

Jarque-Bera Test R Chi2 61.11834 5.351275e-14
Shapiro-Wilk Test R W 0.9128318 5.112739e-07

Ljung-Box Test

R Q(10) 13.90641 0.1773034
R Q(15) 15.16975 0.4392602
R Q(20) 17.499 0.6203744
R2 Q(10) 3.097789 0.9790281
R2 Q(15) 5.89876 0.9813986
R2 Q(20) 6.995376 0.9967002

Table 8: GARCH residuals tests
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Figure 10: GARCH predictions for Spain (top), the Balearic Islands (bottom left) and Andalu-
sia (bottom right).
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more complicated (non-linear) GARCH models might be needed, such as EGARCH or
NGARCH models.

However, we believe that part of the complications that we have run into might be
due to the dichotomy in the data: the data before 2015 were obtained from the original
EGATUR surveys, whereas the data starting from 2015 is taken from the monthly sum-
maries published by INE. This might explain, at least partially, why we observe a lower
volatility in the period since 2015 than in the period closer to 2008. On the other hand,
the lower volatility seems to set in already in 2013, so perhaps the lower volatility is a true
effect of the mitigation of the 2008 crisis.

We hope to be able to answer this question, and to generally improve on the results
presented here, by obtaining and analysing the full EGATUR surveys for these more recent
data (since 2015) too.
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